Big Bang Teorisi
Big Bang Teorisi
Büyük patlama (İngilizce: Big Bang), evrenin en eski 13,8 milyar yıl önce tekillik noktası denilen bir noktadan itibaren genişlediğini varsayan evrenin evrimi kuramı ve geniş şekilde kabul gören kozmolojik modeldir. İlk kez 1920’li yıllarda Rus kozmolog ve matematikçi Alexander Friedmann ve Belçikalı fizikçi papaz Georges Lemaître tarafından ortaya atılan bu teori, çeşitli kanıtlarla desteklendiğinden bilim insanları arasında, özellikle fizikçiler arasında geniş ölçüde kabul görmüştür.
Teorinin temel fikri, hâlen genişlemeye devam eden evrenin geçmişteki belirli bir zamanda sıcak ve yoğun bir noktadan yani tekillik noktasından itibaren genişlemiş olduğudur. Georges Lemaître ’in önceleri “ilk atom hipotezi” olarak adlandırdığı bu varsayım günümüzde “büyük patlama teorisi” adıyla yerleşmiş durumdadır. Modelin iskeleti Einstein’ın genel görelilik kuramına dayanmakta olup, ilk Big Bang modeli Alexander Friedmann tarafından hazırlanmıştır. Model daha sonra George Gamow ve çalışma arkadaşları tarafından savunulmuş ve ilk nükleosentez olayı eklenmek suretiyle geliştirilerek sunulmuştur.
1929’da Edwin Hubble’ın uzak galaksilerdeki (galaksilerin ışığındaki) nispi kırmızıya kaymayı keşfinden sonra, bu gözlemi, çok uzak galaksilerin ve galaksi kümelerinin konumumuza oranla bir “görünür hız”a sahip olduklarını ortaya koyan bir kanıt olarak ele alındı. Bunlardan en yüksek “görünür hız”la hareket edenler en uzak olanlarıdır. Galaksi kümeleri arasındaki uzaklık gitgide artmakta olduğuna göre, bunların hepsinin geçmişte bir arada olmaları gerekmektedir. Big Bang modeline göre, evren genişlemeden önceki bu ilk durumundayken aşırı derecede yoğun ve sıcak bir hâlde bulunuyordu. Bu ilk hâle benzer koşullarda üretilen “parçacık hızlandırıcı”larla yapılan deney sonuçları teoriyi doğrulamaktadır. Fakat bu hızlandırıcılar, şimdiye dek yalnızca laboratuvar ortamındaki yüksek enerji sistemlerinde denenebilmiştir. Evrenin genişlemesi olgusu bir yana bırakılırsa, Big Bang teorisinin, ilk genişleme anına ilişkin bir bulgu olmaksızın bu ilk hâle herhangi bir kesin açıklama getirmesi mümkün değildir. Kozmozdaki hafif elementlerin günümüzde gözlemlediğimiz bolluğu, Big Bang teorisince kabul edilen ilk nükleosentez sonuçlarına uygun olarak, evrenin ilk hızlı genişleme ve soğuma dakikalarındaki nükleer süreçlerde hafif elementlerin oluşmuş olduğu tahminleriyle örtüşmektedir (Hidrojen ve helyumun evrendeki oranı, yapılan teorik hesaplamalara göre Big Bang’den arda kalması gereken hidrojen ve helyum oranıyla uyuşmaktadır. Evrenin bir başlangıcı olmasaydı, evrendeki hidrojenin tümüyle yanarak helyuma dönüşmüş olması gerekirdi.). Bu ilk dakikalarda, soğuyan evren bazı çekirdeklerin oluşmasına imkân sağlamış olmalıydı (Belirli miktarlarda hidrojen, helyum ve lityum oluşmuştu.).
Big Bang terimi ilk kez İngiliz fizikçi Fred Hoyle tarafından 1949’da, “Eşyanın Tabiatı” adlı bir radyo (BBC) programındaki konuşması sırasında kullanılmıştır. Hoyle, hafif elementlerin bazı ağır elementleri nasıl meydana getirebilecekleri konusunda katkıları olmuş bir bilim insanıdır.
Bilim insanlarının çoğu, evrenin başlangıcında, bir Big Bang olayının cereyan etmiş olduğuna ancak 1964/1965’te, evrenin sıcak ve yoğun döneminin kanıtı olarak kabul edilen “kozmik mikrodalga arka plan ışıması”nın ya da Georges Lemaître’in kullandığı terimlerle «Big Bang’ın soluk ışıklı yankısı»nın keşfinden sonra ikna oldular.
Big Bang ve karşısındaki durağan hâl teorisi
Evrenin genişlediğinin keşfi, evrenin statik olmadığını ortaya koymakla birlikte, “maddenin sakınımı yasası”nı göz önünde bulunduran ve bulundurmayan birçok farklı görüşün ortaya atılmasına imkân vermişti. Bu görüşlerden başlangıçta maddenin yaratılışının söz konusu olduğunu varsayan görüş, ilk zamanlar en popüler olanıydı. Bu başarıdaki sebeplerden biri, “durağan hâl (sabit durum) teorisi” denilen bu modelde evrenin sonsuz kabul edilmesiydi. Fred Hoyle tarafından ortaya atılan “durağan hâl teorisi”ne göre evrenin yaşı ile bir gök cisminin yaşı arasında bir çelişki olamazdı.
Buna karşılık Big Bang hipotezinde evrenin, genişleme oranından yola çıkılarak hesaplanabilecek belirli bir yaşı vardı. 1940’lı yıllarda evrenin genişleme oranı hakkındaki tahminler bir hayli abartılıydı, bu da evrenin yaşı hakkındaki tahminlerin gerçeğin bir hayli altında olarak yapılmasına neden olmuştu. Öyle ki, Dünya’nın yaşını belirleyen farklı tarihlendirme yöntemlerinin bildirdiği değerlere göre Dünya evrenden daha yaşlı kalıyordu. Bu, önceleri, Big Bang tipi modellerin çeşitli gözlemler karşısında içine düştüğü güçlüklerden yalnızca biriydi. Fakat bu tür güçlükler evrenin genişleme oranının kesin biçimde belirlenmesiyle tarihe karıştılar.
Gözlemsel kanıtlar
Sonradan iki kesin gözlemsel kanıt Big Bang modellerine tümüyle hak verdi: Evren tarihinin sıcak devrinin kalıntısı denilebilecek enerji ışıması (mikrodalga sahası) olan “kozmik mikrodalga arka plan ışıması”ın keşfi ve hafif elementlerin salınmasının ölçülmesi, yani ilk sıcak evre sırasında oluşmuş hidrojen, helyum, lityumun farklı izotoplarının bırakılmasının ölçülmesi.
Bu iki gözlem, 20. yy.’ın ikinci yarısının başlarında gerçekleşti ve Big Bang’i kozmolojide, kesin biçimde, gözlemlenebilir evreni tanımlayan model olarak yerleştirdi. Bu modelin kozmolojik gözlemlerle hemen hemen mükemmel biçimde örtüşmesinin yanı sıra, modeli doğrulayan başka kanıtlar da ortaya koyulmaya başlandı: Galaktik kümelerin gözlemi ve “kozmik arka plan soğuması”nın ölçülmesi (birkaç milyar yıl öncesiyle günümüzdeki ısı farkının ölçülebilmesi).
Kozmik arka plan
Genişleme, doğal olarak bize evrenin geçmişte daha yoğun olduğunu bildirmektedir. Evrenin geçmişte daha sıcak olması olasılığından ilk kez 1934’te Georges Lemaître’in söz etmiş olduğu görülüyor; fakat bunun gerçek anlamda araştırılmasına ancak 1940’lı yıllardan itibaren başlanmıştır. Uzak astrofiziksel cisimlerin ışımasındaki kırmızıya kaymaya benzer bir tarzda, evrenin genişleme olayıyla enerji kaybeden bir ışımayla dolu olması gerektiği konusundaki ilk düşünceler George Gamow’dan gelmiştir.
Gamow aslında, ilksel evrendeki güçlü yoğunlukların, atomlar arasında bir termik dengenin kurulmasına ve ardından bu atomlarca bırakılan bir ışımanın varlığına imkân sağlamış olması gerektiğini anlamıştı. Gamow, 1940’lı yıllarda Lemaitre’in hesaplamalarını geliştirdi ve Big Bang’e bağlı olarak bir tez ortaya attı. Big Bang’den arta kalan, belirli oranda bir ışımanın var olması gerekiyordu. Ayrıca bu ışıma evrenin her yanında eşit olmalıydı. Bu ışımanın evrenin yoğunluğu oranında bir yoğunlukta olması ve dolayısıyla, bu ışımanın, yoğunluğu artık son derece azalmış olsa da hâlen mevcut olması gerekiyordu. Gamow, Ralph Alpher ve Robert C. Herman’la birlikte, evrenin yaşından, maddenin yoğunluğundan ve helyumun salınmasından yola çıkılarak bu ışımanın günümüzdeki ısısının hesaplanabileceğini anlayan ilk kişi oldu.
Bu ışımaya günümüzde « fosil ışıma » diyenler de bulunmakla birlikte, genellikle, “ kozmik mikrodalga arka plan (ya da kozmolojik mikrodalga artalan) ışıması” denir. Bu ışıma, Gamow’un öngörülerine uygun olarak, düşük ısıdaki bir “karanlık cisim” ışımasına (2,7 °K) denktir. Biraz rastlantı sonucu olan bu keşfi Arno Allan Penzias ve Robert Woodrow Wilson’a borçluyuz: 1960’larda New Jersey’deki Bell Laboratuvarı’ndan Arno Penzias ve Robert Woodrow Wilson, Samanyolu’nun dış kısımlarından gelen belirsiz radyo dalgalarını ölçmeye çalışıyorlardı. Fakat bunun yerine gökyüzünün her tarafından gelen bir radyasyon saptadılar. Bu ışıma ya da ışınımın bütün yönlerdeki parlaklığı aynı idi ve yaklaşık 3 °K sıcaklığında bir ortamdan geldiği anlaşılıyordu. 1978’de bu buluşları için Nobel Fizik Ödülü sahibi olan Penzias ve Wilson ilginçtir ki, ileride, Fred Hoyle gibi, Big Bang teorisine muhâlif olan bilim insanları safına katılacaklardı.
1965’te keşfedilen “kozmik arka plan” Big Bang’ın en açık kanıtlarından biridir. Bu keşiften sonra kozmik arka plan dalgalanmaları COBE (1992) ve WMAP (2003) uzay uydularınca incelenmektedir.
Bir “kara cisim” ışımasının varlığı Big Bang modeli çerçevesinde kolayca açıklanabilmektedir: Geçmişte evren sıcaktı ve yoğun bir ışımaya maruz kalıyordu. Geçmişin çok yüksek yoğunluktaki bu evreninde madde ve ışıma arasında çok çeşitli etkileşimler olmaktaydı. Bunun sonucunda ışıma termalize olmuştur, yani elektromanyetik tayfı bir “kara cisim”in elektromanyetik tayfıdır. Buna karşılık “durağan hâl teorisi”nde böyle bir ışımanın varlığı hemen hemen doğrulanamaz durumdadır (Az sayıdaki bazı savunucuları aksini belirtmekteyse de…)
Düşük ısıdaki ve az enerjetik bir ışımaya denk olmakla birlikte, kozmik arka plan, yani kozmik mikrodalga arka plan ışıması hiç de evrenin en büyük elektromanyetik enerji biçimi olarak görünmüyor: Enerjinin yaklaşık %96’sı söz konusu ışımadaki fotonlar biçiminde mevcutken, kalan %4’ü “görünür tayf”taki yıldızların ışınımından ve galaksilerdeki soğuk gazdan kaynaklanmaktadır (kızılötesi hâlde). Bu diğer iki kaynak kuşkusuz daha enerjetik, fakat daha az sayıda fotonlar yaymaktadır. “Durağan hâl teorisi”nde “kozmik arka plan”ın varlığı mikroskobik demir parçacıklarının bırakılmasıyla oluştuğu varsayılan yıldızsal ışımanın termalizasyonunun bir sonucu olduğu varsayılır. Fakat bu model, gözlemsel verilerle çelişki hâlindedir. (Ayrıca bu takdirde “kozmik arka plan” bir karanlık cisim olarak da açıklanamaz.)
Sonuç olarak denilebilir ki kozmik arka planın keşfi, tarihsel olarak Big Bang’in kesinleştirici kanıtı olmuştur.